Abstract
Patent foramen ovale with right to left shunt as a cause of hypoxia without Eisenmenger’s physiology or with only moderately elevated pulmonary artery pressures is an uncommon presentation. Initial diagnosis via transesophageal echocardiography requires detection of a shunt with either color Doppler or agitated saline contrast with or without Valsalva maneuver. This rare but diagnosable case presented was simply corrected with placement of a CardioSEAL device. Causes of right to left shunt without elevated pulmonary artery pressures are discussed.

Introduction
Patent foramen ovale (PFO) is an anatomical variant occurring in the septum separating the atrial chambers. PFO provides communication between the atrial chambers of the heart through the ostium secundum with the septum primum acting as a 1-way valve that allows flow from the right to left atria, bypassing the lungs. This septum normally remains patent before birth and closes with the first breath of air a baby takes because of increased left-sided pressures. Anatomical closure usually occurs by 2 years of age. However, it remains patent in a subset of the population. Autopsy studies have shown an overall prevalence of approximately 27% in the general population, decreasing with increasing age (35% and 20% in age groups <30 years and >80 years, respectively). The average size is estimated at 4.9 mm with a majority being <10 mm in size. The agitated saline contrast study with transesophageal echocardiography (TEE) and the Valsalva maneuver is the gold standard test for detection of PFOs. The authors present a case report of a 58-year-old woman with an uncommon presentation of hypoxia secondary to right to left shunt (without Eisenmenger’s physiology and with only moderately elevated pulmonary artery pressures). A 23 mm CardioSEAL device was placed in the PFO with significant improvement in the patient’s functional status at 1 month and continued stability at 6-month follow-up.

Case Report
A 58-year-old woman presented with a 9-month history of shortness of breath and a 1-month history of bilateral lower extremity pedal edema with baseline oxygen saturation in the 60s to 70s. She denied orthopnea or platypnea. Pulmonary history was significant for 41 pack years of smoking and prior diagnosis of chronic obstructive pulmonary disease. Past medical history was also significant for hypertension, cervical carcinoma (28 years ago), cecal adenocarcinoma (1 year ago) stage I, earliest stage (Tis), no lymph node involvement (N0), no distant spread (M0), status post-right hemicolectomy, anal cell carcinoma (1 year ago), status post-surgical resection, and chemotherapy. The patient had an unremarkable surgical course during her hemicolectomy 1 year ago. She did not have excessive bleeding and had a hemoglobin of 12.6 g/dL. She had no problems with hypoxia. Her medications included carvedilol, furosemide, aspirin, acetaminophen with codeine, and vitamin B12.

Physical examination showed the patient was afebrile with a blood pressure of 133/76 mm Hg, regular pulse of 75 beats/min and respirations at 17 beats/min. She exhibited central cyanosis and elevated jugular vein distension. Her lungs were clear to auscultation and heart sounds were regular with non-displaced apical impulse. Clinically hepatomegaly was not noted. Bilateral lower extremity pedal edema of 2-3+ was present. The remainder of the physical examination was within normal limits. The patient’s oxygen (O2) saturation measured 66% on 2 liters of O2 and increased to...
(ECHO) showed evidence of a severely enlarged right atrium and right ventricle, depressed right ventricular systolic function, normal left ventricular systolic function, and continuous flow to left atrium from an unknown source. A systolic pulmonary artery pressure was estimated to be at 40-45 mm Hg from a tricuspid regurgitation jet. A pulmonary regurgitation jet was not identified. TEE showed marked right heart enlargement and presence of a defect in atrial septum with the presence of a flap valve formed due to overlapping layers of foramen ovale with the blood flowing from the right atrium to the left atrium under this flap, consistent with a PFO.

Catheterization confirmed presence of low femoral artery saturation (82%) with normal saturation in the left upper pulmonary vein (100%). There was a 9 mm Hg pressure gradient across the interatrial septum with mean pressure in the right atrial of 20 mm Hg and mean pressure in the left atrial of 11 mm Hg. Pulmonary artery trunk pressure was moderately elevated at 40/20/28 mm Hg with normal capillary wedge pressure at 8 mm Hg. To evaluate for tolerance of right heart after closure, temporary occlusion of the PFO with the sizing balloon was attempted (Figure 1), and the femoral artery O_2 saturation increased from a value of 75% O_2 saturation to a value of 94% O_2 saturation at 10 minutes, and to a value of 95% O_2 saturation at 30 minutes. The size of the PFO was measured at 10 mm. Pulmonary artery trunk pressures (baseline 48/27/34 mm Hg, 37 minutes after occlusion 52/25/37 mm Hg) and aortic pressures (baseline 145/90 mm Hg, 37 minutes after occlusion 157/94 mm Hg) remained stable after temporary occlusion of PFO. A 23 mm CardioSEAL device (Figure 2) was subsequently placed in the PFO without complications. An ECHO obtained the next day documented successful PFO closure with minimal residual shunting. The patient’s O_2 saturation ranged between 85%-93% on 5-6 liters of oxygen in the first 24 hours. At 1 month follow-up, the patient showed significant improvement in functional status with O_2 saturations of 82% on room air. She continued to be stable at 6 months post-procedure.

DISCUSSION

Clinical manifestations of PFO include stroke, platypnoea-orthodeoxia, decompression sickness, right to left shunt, and migraine headaches. Hypoxia secondary to right to left shunt (without Eisenmengers physiology or significantly elevated pulmonary artery pressures) is an uncommon presentation. Initial diagnosis via TEE requires detection of a shunt with either color Doppler
or agitated saline contrast with or without Valsalva maneuver. The agitated saline contrast study with TEE and the Valsalva maneuver is the gold standard test for detection of PFOs.

Pathophysiology
Right to left shunt via PFO is commonly seen secondary to chronically increased right side pressures including tetralogy of Fallot, pulmonary stenosis, right heart tumors, tricuspid atresia, tricuspid stenosis, ventricular septal defects, and atrial septal defects. There is another subset of patients wherein acute right to left shunting occurs secondary to increased right side pressures with recurrent pulmonary emboli, right ventricular infarction, pulmonary hypertension secondary to pneumonectomies or lobectomies, asthma, low atmospheric pressure, and pericardial tamponade.

It is sometimes simple to find the trigger for right to left shunt, but in patients whose pulmonary artery trunk pressure was only moderately elevated, there is no easily identifiable single cause. Multiple theories have been postulated to explain severe shunting that can lead to hypoxia. One theory is the transient elevation of right atrial pressure in each cardiac cycle. The presence of sino-atrial node causes earlier depolarization of the right atrium leading to higher pressure in the right atrium compared to the left, thus leading to the right to left shunt. This transient elevation of right-sided pressures is exacerbated in a variety of physiological conditions like respiratory cycles (inspiration), Valsalva maneuver, posture (underlying mechanism for platypnea-orthodeoxia syndrome), etc. A second theory that may explain this phenomenon is the flow of blood from the inferior vena cava preferentially toward the PFO (and inter-atrial septum), similar to the circulatory pattern in the fetus. This flow is secondary to the anatomical remodeling of the right atrium, positioning the fossa ovalis in the direction of the blood flow from the inferior vena cava, with the Eustachean valve contributing significantly to the flow phenomenon into fossa ovalis. A third theory proposes the decreased compliance of the right ventricle in comparison to the left ventricle as the mechanism of cause.

Diagnosis and Treatment
The gold standard for diagnosing PFO is TEE with agitated saline contrast and Valsalva maneuver. Typically initial screening is performed with TTE with agitated saline contrast. Because of the preferential blood flow from the inferior vena cava toward the atrial septum, contrast administration from the femoral vein has shown higher sensitivity for detection of PFOs compared to the ante-cubital vein approach. Common respiratory conditions and thromboembolic events as a cause of hypoxia should be ruled out initially. Correction of hypoxia with temporary occlusion of the PFO during catheterization will provide clear evidence of PFO with right to left shunt as the etiology of hypoxia, as demonstrated in this patient.

Mechanical closure is clearly indicated in significantly hypoxic patients. In recent years, with advancement of percutaneous techniques, transcatheter closure of the PFO has yielded positive results without accompanying surgical morbidity and mortality. Most studies regarding the effectiveness of closure devices in patients with PFOs were performed in patients with cryptogenic strokes. Complications arising from percutaneous closure include thrombus formation on the closure device, pericardial effusion, or fracture of the device. One case series reported thrombus formation on the closure device in only 20 of 1000 patients who had device placement.

In summary, this case illustrates the pathophysiological mechanisms underlying a left to right shunt across PFO with only moderately elevation of the pulmonary artery trunk pressures. This is a rare but identifiable cause of hypoxia, which can be simply corrected.

Acknowledgments/Funding/Support: The authors thank Marshfield Clinic Research Foundation for its support through the assistance of Anne Nikolai, Linda Weis, and Alice Stargardt in the preparation of this manuscript.

Financial Disclosures: None declared.

REFERENCES

The mission of the *Wisconsin Medical Journal* is to provide a vehicle for professional communication and continuing education of Wisconsin physicians.

The *Wisconsin Medical Journal* (ISSN 1098-1861) is the official publication of the Wisconsin Medical Society and is devoted to the interests of the medical profession and health care in Wisconsin. The managing editor is responsible for overseeing the production, business operation and contents of *Wisconsin Medical Journal*. The editorial board, chaired by the medical editor, solicits and peer reviews all scientific articles; it does not screen public health, socioeconomic or organizational articles. Although letters to the editor are reviewed by the medical editor, all signed expressions of opinion belong to the author(s) for which neither the *Wisconsin Medical Journal* nor the Society take responsibility. The *Wisconsin Medical Journal* is indexed in Index Medicus, Hospital Literature Index and Cambridge Scientific Abstracts.

For reprints of this article, contact the *Wisconsin Medical Journal* at 866.442.3800 or e-mail wmj@wismed.org.

© 2008 Wisconsin Medical Society