Travel-Associated Dengue Illnesses Among Wisconsin Residents, 2002-2008

Mark J. Sotir, PhD, MPH; Diep K. Hoang Johnson, BS; Jeffrey P. Davis, MD

ABSTRACT

Introduction: Dengue infections in humans can result in self-limited illness or conditions that can be severe and life-threatening. Persons traveling to many tropical regions are at risk for dengue infection. This report retrospectively summarizes travel-associated dengue cases occurring among Wisconsin residents from 2002 through 2008.

Methods: We used a surveillance case definition based on the Centers for Disease Control and Prevention (CDC) 1996 dengue illness case definition. Detection of dengue-specific IgM antibody in serum specimens was used for laboratory confirmation of dengue. Clinical and travel histories, mosquito exposure, and repellent use were obtained from patients by interview using arbovirus-specific data collection forms.

Results: During 2002-2008, 32 travel-associated dengue illnesses were reported among Wisconsin residents; none met the case criteria of dengue hemorrhagic fever or dengue shock syndrome. Fever (100%), headache (90%), and myalgia (87%) were the most frequently reported signs and symptoms. Nine (28%) patients were hospitalized; no deaths occurred. Onsets in 25 (81%) of 31 patients with reported travel histories occurred after return to Wisconsin. Eighteen (56%) of the 32 patients were female; median age was 35.5 years (range 12 to 68 years). Patients most frequently reported travel to Mexico/Central America (45%) or the Caribbean Islands (39%). Cases occurred during all months. Reported mosquito exposure was high among patients (85%), but consistent repellent use was low (6%).

Conclusions: Dengue illnesses occur in travelers to dengue-endemic tropical areas. Travelers to these areas must take precautions to prevent mosquito bites. Clinicians should consider dengue in travelers who develop febrile illnesses with headache or myalgia within 2 weeks of their return. Arboviral diseases, including dengue, are reportable in Wisconsin.

INTRODUCTION

Dengue virus is a flavivirus, a genus of viruses that include West Nile virus and yellow fever virus. Dengue virus has 4 distinct serotypes (Dengue 1, 2, 3, and 4) that are almost always transmitted to humans from the bite of an Aedes mosquito, typically Aedes aegypti. The spectrum of dengue illness in humans ranges from self-limited dengue fever (DF) illness, typically consisting of sudden onset of fever, headache, myalgia, and rash, to dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), conditions that can be severe and life-threatening. The incubation period for dengue illness is typically 4-7 days (range: 3-14 days), with fever lasting from 2 to 7 days. Dengue is endemic throughout tropical areas of the world, including Mexico and Central America, the Caribbean, South America, the Indian subcontinent, Indonesia, Africa, and Australia and New Zealand (Figure 1). Dengue endemicity is increasing worldwide because of the vast and increasing range of its primary vector, the Aedes aegypti mosquito. This geographic expansion began following World War II and has been dramatic during the past 20 years. Dengue virus is unique among arboviruses because it is fully adapted to the human host and the human environment, virtually eliminating the need for a primitive enzootic forest cycle and other animal reservoirs to ensure its maintenance. Although not endemic within the United States mainland, dengue is well-established in Puerto Rico and dengue infections have recently been documented among US residents who live near the Texas-New Mexico border.
Travel-associated dengue infections are documented worldwide, including among US citizens. These reports illustrate the continuing risk of dengue infection among persons travelling to tropical regions where dengue is endemic. Periodic dengue epidemics, such as those occurring in the Caribbean and Brazil in 2007 and 2008, increase the risk to travelers who visit such areas when epidemics are occurring.

This report retrospectively summarizes reported travel-associated dengue cases occurring among Wisconsin residents from January 2002 through December 2008. We describe epidemiologic and clinical characteristics of case patients, document the locations of patient travel, examine the seasonality of cases, assess mosquito exposure and repellent use among case-patients during their exposure-related travel, and provide recommendations to reduce the risk of dengue infection while travelling.

METHODS

Case Definition
We used the Centers for Disease Control and Prevention (CDC) 1996 dengue illness case definition as a basis for the surveillance case definition used to classify dengue illnesses occurring in Wisconsin residents. Dengue illness was defined as an acute febrile illness with an associated positive immunoglobulin M (IgM) antibody test of an acute or convalescent serum to any 1 of the 4 dengue viruses in a person with recent travel to a dengue-endemic area and with onset from January 1, 2002 through December 31, 2008. DHF was defined as dengue illness that met the definition for DHF with hypotension or narrow pulse pressure (≤20 mm Hg). DF was defined as dengue illness not meeting the criteria for DHF or DSS.

Laboratory Testing
Laboratory confirmation of dengue infection in all patients was obtained by testing acute serum specimens. Testing for the presence of dengue-specific IgM antibody using enzyme-linked immunosorbent assays (ELISAs) was conducted at 6 different commercial laboratories within the continental United States; for 1 patient, similar testing was conducted at the CDC laboratory in San Juan, Puerto Rico. Laboratory staff forwarded dengue IgM-positive laboratory results to the Wisconsin Division of Public Health (WDPH) and WDPH staff subsequently reported these results to the local health department (LHD) of jurisdiction. The Wisconsin State Laboratory of Hygiene (WSLH) does not routinely confirm positive dengue-IgM results from commercial laboratories.

Epidemiologic Data Collection and Analysis
Patient data were obtained by LHD or WDPH staff during routine surveillance follow-up after laboratory reports of positive IgM ELISA tests to 1 of the 4 dengue virus serotypes were received by the WDPH. Data on demographic features, illness onset date, clinical signs and symptoms, hospitalization, and recent travel history (≤14 days prior to illness onset) were obtained using standardized data collection forms, either the WDPH Arbovirus Infection Follow-up Form or the CDC Dengue Case Investigation Form. Mosquito exposure/bite data (mosquito exposure and bites, mosquito exposure only, neither mosquito exposure nor bites) and frequency of repellent use while traveling (always, most of the time, sometimes, or never) were collected.

Figure 1. Distribution of dengue in the western and eastern hemispheres.
for patients with onsets during 2006 through 2008. Data were entered into a Microsoft Excel database and quantitative analyses were conducted using Epi Info software, version 3.3.2 (CDC, Atlanta, GA).

RESULTS
From January 1, 2002 to December 31, 2008, 32 reported cases of travel-associated dengue illness occurred among Wisconsin residents who visited dengue-endemic areas; 24 (75%) cases occurred during 2005-2007 (Figure 2). All cases were classified as DF; no DHF or DSS were reported. Cases occurred in residents of 15 Wisconsin counties: Brown (2), Calumet (1), Columbia (1), Dane (9), Jefferson (2), Kenosha (1), La Crosse (2), Marathon (1), Marinette (1), Milwaukee (5), Outagamie (2), Pierce (1), Sheboygan (1), Winnebago (2), and Wood (1). Median age of case patients was 35.5 years (range 12-68 years); 18 (56%) were female.

Laboratory confirmation of dengue infection was determined serologically for all case patients. All but 1 serum specimen was obtained within 60 days of symptom onset (median=8 days, range 1-59 days); 1 specimen was collected 161 days following symptom onset. Specimens for 26 (81%) of the 32 patients were obtained at least 6 days after onset, with 17 (65%) of the 26 collected between 6 and 14 days after onset. Of the 31 patients with travel history, 25 (81%) had both symptom onset and confirmatory specimen collection after returning to Wisconsin, 5 (16%) had onset overseas but confirmatory specimen collection in Wisconsin, and 1 (3%) had onset and confirmatory specimen collection in Puerto Rico.

Clinical information was reported for 31 cases (Table 1). As typically reported among patients with DF illness, fever (100%), headache (90%), and myalgia (87%) were the most frequently reported signs or symptoms. Rash was reported in 14 (45%) patients. Two patients reported petechiae and 1 reported hematuria, but none of these patients had illnesses meeting the DHF case definition. One patient, a 60-year-old man with onset in 2008, reported a previous dengue infection in 1969. Nine (28%) patients were hospitalized; length of hospitalizations ranged from 1 to 5 days (median 3 days). No deaths occurred.

Information on travel before illness onset was available for 31 patients. Dengue infection for most patients occurred in dengue-endemic parts of Mexico/Central America (45%) or the Caribbean Islands (39%) (Table 2). The specific travel destinations most frequently reported by patients were Mexico (6), Puerto Rico (4), and Costa Rica (4). Other areas of exposure included the Indian Subcontinent, Southeast Asia, South America, the South Pacific Islands, and the Arabian Peninsula. Onsets of travel-related dengue illness among Wisconsin residents occurred throughout the entire calendar year (Figure 3).

Mosquito exposure and bite data during the 14 days before illness onset were available for 20 patients. Seventeen (85%) of the 20 patients reported mosquito exposure with bites, 2 (10%) reported exposure with no bites, and 1 (5%) reported neither exposure nor bites. Of the 18 patients with repellent use information, 7 (39%) reported that they never used repellent, 7 (39%) indicated sometimes using repellent, and 3 (17%) reported using repellent most of the time; only 1 (6%) patient reported always using repellent during travel before illness occurrence.
Clinical presentation of dengue among patients described in this report was typical of DF. Fever was reported for all patients, and headache, myalgias, and fatigue were each prominently reported; rash and gastrointestinal signs and symptoms were reported less frequently. Other than petechiae being reported in 2 patients, there was no evidence of DHF or DSS in the Wisconsin patients, likely in part because only 1 patient reported a previous dengue infection. While all patients included in this report had non-hemorrhagic dengue illnesses, 28% were ill enough to require hospitalization.

Laboratory confirmation of infection is required for diagnosis of dengue. Diagnoses are made by detecting virus in acute phase blood or serum (obtained <6 days after illness onset), or detecting specific antibodies in convalescent specimens (obtained ≥6 days after onset) typically using an IgM capture ELISA test in persons with clinical illness and travel histories consistent with dengue infection. IgM usually appears at detectable levels within 6 to 7 days after onset of illness and can persist up to 60 days or more. To confirm the diagnosis, serological testing of paired acute and convalescent sera for 4-fold difference in titers in IgM or IgG is recommended. This is especially important in testing patients residing in dengue-endemic countries. ELISA testing for anti-dengue virus IgM and IgG antibody is available in most commercial and reference laboratories. A real-time reverse transcription (RT)-PCR testing for dengue virus RNA able to detect specific serotypes is also available in some commercial laboratories.

ELISA tests detecting anti-dengue IgM can be limiting because of their inability to differentiate between the 4 specific dengue virus types and cross-reactivity may occur with other flaviviruses. However, a positive IgM titer from a single specimen can be useful for surveillance and diagnosis of dengue virus infection when epidemiologic information and clinical signs and symptoms are available and consistent with acute infection.

Onsets of dengue illnesses occurred during all months among these patients, suggesting that clinical suspicion of dengue in returning travelers should be year-round. However, overall risk for dengue is not uniform, but seasonal, and can depend on the endemic-
Laboratory and epidemiologic activities. The enhancements likely improved the detection and reporting of all arboviral infections, including dengue, to the WDPH. This might also partly explain why most of the cases in this report occurred during 2005–2007. However, factors such as economic conditions and increased foreign travel during that time might also be important.

Recommendations and Conclusion
The risk of dengue among travelers is increasing and not likely to decrease in the near future. We recommend that all travelers to dengue-endemic areas be educated about the risk of dengue, including receiving recommended pre-travel advice on dengue illness by a knowledgeable health care professional.8 Travelers should use precautions designed to reduce mosquito exposure, including remaining in well-screened or air-conditioned areas if possible, wearing clothing that covers arms and legs, and applying an effective insect repellent (such as one containing DEET) to skin and clothing.22

Clinicians need to consider dengue in returning travelers who have onset of a febrile illness with headache or myalgias within 2 weeks of returning from a tropical or subtropical area where dengue viruses may be present. Patients with dengue infections should be made aware that whenever they travel to dengue-endemic areas in the future, they will be at greater risk of experiencing more serious illness if they are infected with a dengue virus of different serotype.1,25 Co-circulation of multiple dengue serotypes, or hyperendemicity, now occurs in many areas of the Americas and Southeast Asia and places those areas at increased risk for higher community-wide rates of severe dengue illnesses.1

All arboviral diseases are reportable in Wisconsin. Reporting of dengue illnesses in Wisconsin is conducted as part of a laboratory-based statewide arbovirus surveillance program, with laboratories required to report positive dengue tests to the WDPH. Clinicians are also required to report confirmed and suspected cases of dengue to the local health department where the patient lives. This dual reporting is important in ensuring that dengue illnesses are reported to the WDPH, which subsequently reports them to the CDC.

In 2001, following introduction of West Nile virus (WNV) into the state, arboviral-related surveillance was enhanced when federal funds were provided to the WDPH, WSLH, and LHDs to support WNV-related laboratory and epidemiologic activities. The enhancements likely improved the detection and reporting of all arboviral infections, including dengue, to the WDPH. This might also partly explain why most of the cases in this report occurred during 2005–2007. However, factors such as economic conditions and increased foreign travel during that time might also be important.
they occur 24 hours before or after defervescence.\(^1\) If such signs or symptoms should occur, patients should seek medical attention immediately.

Finally, since dengue and other arboviral infections continue to occur in Wisconsin residents, reporting of these infections to the public health system should continue. This reporting is vital to arboviral surveillance in Wisconsin and the United States.

Acknowledgments: We thank clinicians and laboratory workers for reporting the cases of dengue in this manuscript to the Wisconsin Division of Public Health. We also acknowledge D. Fermin Arguello, MD, Dengue Branch, Centers for Disease Control and Prevention, for reviewing and providing context to some of the information contained in this report.

Funding/Support: None declared.

Financial Disclosures: None declared.

REFERENCES

The mission of the *Wisconsin Medical Journal* is to provide a vehicle for professional communication and continuing education of Wisconsin physicians.

The *Wisconsin Medical Journal* (ISSN 1098-1861) is the official publication of the Wisconsin Medical Society and is devoted to the interests of the medical profession and health care in Wisconsin. The managing editor is responsible for overseeing the production, business operation and contents of *Wisconsin Medical Journal*. The editorial board, chaired by the medical editor, solicits and peer reviews all scientific articles; it does not screen public health, socioeconomic or organizational articles. Although letters to the editor are reviewed by the medical editor, all signed expressions of opinion belong to the author(s) for which neither the *Wisconsin Medical Journal* nor the Society take responsibility. The *Wisconsin Medical Journal* is indexed in Index Medicus, Hospital Literature Index and Cambridge Scientific Abstracts.

For reprints of this article, contact the *Wisconsin Medical Journal* at 866.442.3800 or e-mail wmj@wismed.org.

© 2009 Wisconsin Medical Society