Low-Vision Education for the Health Care Workforce: A Strategy to Create a Vision-friendly Hospital

Ariba Khan, MBBS, MPH; Susan Simon, APNP

ABSTRACT:

Background: Aging of the baby boomers presents a unique set of challenges for health care workers. Low vision among patients may be a barrier to providing appropriate patient care, may impede communication, and may decrease patients’ satisfaction with health care. It is important to train the medical workforce to understand the unique challenges of the aging population.

Objective: To test an interactive educational learning model targeting health care workers to improve knowledge and awareness of low vision.

Methods: Participants completed a survey prior to and after an educational intervention that consisted of 4 components: (1) normal aging, (2) eye-disease of the elderly, (3) experiential learning, and (4) written material with references and further resources.

Results: Three hundred eight-six members of the hospital workforce completed the training. There was statistically significant improvement in 7 of the 8 test questions. One question demonstrated a positive trend but was not statistically significant.

Conclusion: An interactive educational model on low vision can improve the knowledge of the health care team. This may lead to improvement in patients’ satisfaction and quality of care and help create a vision-friendly hospital.

BACKGROUND

In the year 2030, the last of the baby boomers will celebrate their 65th birthday, and nearly 1 in 5 US residents will be 65 years or older. The elderly population is projected to increase to 88.5 million in 2050, more than double the number in 2008 (38.7 million). Although they comprise only 12% of the population, they’re responsible for 35% of hospital stays. The Institute of Medicine (IOM) reports a shortage of a competent workforce to care for the older population. The IOM further notes that there is a paucity of required geriatrics exposure during training for nurses, pharmacists, social workers, and medical students.

Providing medical care to the elderly in hospital settings is a challenge due to multiple medical problems and the prevalence of geriatrics syndromes. It is important for the hospital workforce to be equipped with training in issues specific to the elderly population. In addition, there is a need for ongoing education of the hospital care workforce to ensure they are in touch with the latest in geriatrics care.

Low vision is a common problem in the hospitalized elderly, affecting almost half of the patients. Low vision is associated with memory loss, falls, impaired quality of life, driving difficulties, longer length of stay, and higher mortality. Screening and bedside evaluation as part of a multi-component intervention in hospitalized elderly has shown to reduce delirium.

Interdisciplinary education about low vision is important in creating a health care workforce sensitive to the needs of the elderly. It may empower health care professionals to take simple steps to ensure a comfortable hospital experience and create a “vision-friendly hospital.” A “vision-friendly hospital” is sensitive to the needs of seniors with low vision. This includes screening for low visual function and providing interventions to improve the experience of these people during their hospital stay. This is a quality improvement project to test an interactive educational model for health care workers whose purpose is to improve knowledge and awareness of low vision among the elderly.

METHOD

This intervention took place in a community teaching hospital in Milwaukee, Wisconsin, that has a geriatrics consultation service, geriatrics fellows, and an “acute care for elders” unit.

All members of the hospital health care team were invited to
Figure 1: Example of the educational intervention

- **Do you wear glasses or contacts?**
  - For Diabetic patients: Have you had laser photocoagulation treatment for your eyes?

- **Ensure patient has glasses or contacts while in the hospital.**

- **Screen for functional visual loss: “What would you like to do that you cannot do because of your vision?”**

- **Provide low-vision intervention**
  - Magnifiers for reading
  - Large-print magazines
  - Increase lighting
  - Decrease glare
  - Color/contrast aids: tape to mark edge of call light, phone, steps to enhance visibility and safety.
  - Reduce clutter and help set up food tray
  - Organize environment for ease of use and reduce clutter.
  - Orientation to room: using compass directions.
  - Describing room as north, south wall, etc.
  - Orient to use of hand rails and safe mobility
  - Use appropriate walking devices
  - Wear non skid shoes
  - Offer free reading glasses

- **Re-evaluate every shift**

- **Improvement in visual functional loss**
  - Continue intervention

- **No improvement in visual functional loss**
  - Consult rehabilitation services or occupational therapy.
  (Other Criteria to consult Rehab services:
  - Reduced acuity of less than 20/50
  - Central or peripheral field loss with intact acuity
  - Reduced contrast
  - Glare sensitivity
  - Light/dark adaptation difficulties}
participate, and the module was approved as “diversity training”—a mandatory training every year. The intervention was carried out in the hospital cafeteria. The study was approved by the Institutional Review Board (IRB) as an exempt study.

**The Educational Intervention**

A “hands-on” interactive model was developed with the goal of imparting knowledge and changing attitude by allowing experiential learning. Learners are able to “walk in the shoes” of a senior and experience the affect of aging and disease on the eye. The intervention had the following components:

1. **Normal aging model**: A model of the eye demonstrating the anatomy and effects of normal aging.
2. **Diseases affecting the eye**: Pathological changes that commonly occur in the eye demonstrated by the anatomical site: cataract, macular degeneration, diabetic retinopathy, and glaucoma.
3. **Experiential learning**: The learners were able to experience the effect of diseases affecting the eye. Pairs of glasses simulating macular degeneration, glaucoma, and diabetic retinopathy were available. The learners were able to use the simulations to experience the world of our patients. Effect of cataracts on the eyes was demonstrated by Claude Monet’s serial paintings of “Bridge at Giverny.” His cataracts, developed over the years, were evident in the paintings as the bridge became less clear.

4. **Written material (Figure 1)**: The learners were able to take written material that noted normal aging, diseases affecting the eye, further references, and resources.

We measured outcomes using a pre- and post-test questionnaire (Figure 2). The Chi-square test was performed to test the proportional difference. All statistical analyses were performed using SAS 9.2.

**RESULTS**

Three hundred eighty-six members of the hospital workforce completed the training; 19% were nurses, 32% ancillary services, 3% physicians, 13% environmental services, 5% maintenance, 8% dietary, and 2% transportation department, and 18% other. A large proportion of the participants were 46-60 years (45%) and female (78%).

Eight questions measured medical knowledge, all of which showed statistically significant improvement. Question 5 measured the attitude toward people with low vision. There was improvement, but it was not statistically significant. Question 6 measured the learners’ self-confidence; there was statistically significant improvement (Table 1).

**DISCUSSION**

**Lessons Learned**

Education in the form of lectures has a modest effect in changing clinician behavior. Passive education—including distribution of guidelines, written material, and continuing medical education—are not very effective in changing clinician behavior, whereas interactive sessions that allow par-

![Figure 2: Low-vision knowledge questionnaire](image-url)
implication are more effective.\(^\text{18}\) We developed an interactive model that allowed experiential learning.

Some of the limitations of the model are an inability to demonstrate completion of the module. During the day, there was a research intern available to encourage participation. We are not able to measure the effect of her presence; however, her participation did not include imparting education and was only for facilitation of the process. We were not able to measure the effect of the intervention on patient outcomes. Unfortunately, we do not have a control group because it is difficult to randomize the workforce in a midsize hospital. The educational intervention was able to accommodate multiple learners at different levels of knowledge. It was available for 7 days and 24 hours per day in the cafeteria.

### Implication

It is known that interdisciplinary teams are able to change the culture in the hospital.\(^\text{19,20}\) By increasing the medical knowledge, we believe they are more likely to be sensitive to the needs of patients with low vision. This intervention can be replicated easily in other hospitals. In the past, we had low participation of patients with low vision. This intervention can be replicated in other hospitals. In the past, we had low participation of patients with low vision.

### CONCLUSION

An interactive model to educate clinicians on visual loss and function can improve patients’ satisfaction, clinicians’ knowledge, and visual function during the hospital stay.

### Acknowledgments

We would like to thank Gina Muscato for her help, Han-Yang Chen and the hospital workforce for their enthusiasm.

### Funding/Support

None declared.

### Financial Disclosures

None declared.

### REFERENCES

The mission of WMJ is to provide a vehicle for professional communication and continuing education for Midwest physicians and other health professionals.

WMJ (ISSN 1098-1861) is published by the Wisconsin Medical Society and is devoted to the interests of the medical profession and health care in the Midwest. The managing editor is responsible for overseeing the production, business operation and contents of the WMJ. The editorial board, chaired by the medical editor, solicits and peer reviews all scientific articles; it does not screen public health, socioeconomic, or organizational articles. Although letters to the editor are reviewed by the medical editor, all signed expressions of opinion belong to the author(s) for which neither WMJ nor the Wisconsin Medical Society take responsibility. WMJ is indexed in Index Medicus, Hospital Literature Index, and Cambridge Scientific Abstracts.

For reprints of this article, contact the WMJ at 866.442.3800 or e-mail wmj@wismed.org.

© 2011 Wisconsin Medical Society