Osmotic Demyelination Syndrome

Narendranath Epperla, MD; Jillian Landeck; Salah Sabbagh, MD

ABSTRACT

Formerly known as central pontine myelinolysis, osmotic demyelination syndrome (ODS) is defined by a symmetrical destruction of myelin sheaths involving mainly the central portion of the basis pontis without evidence of vascular involvement. We report the case of a 60-year-old man who presented to the emergency department with a 2-week history of progressive confusion, memory loss, and lower extremity weakness with limited ambulation. He was unkempt in appearance and orientated to person and place with ataxia, grade 3 horizontal nystagmus, and dysmetria. Muscle strength was reduced symmetrically in both lower extremities. Blood tests were abnormal only for sodium at 120 mEq/L (range 133-144 mEq/L), while all other results, including ammonia level, were normal. Hyponatremia correction was accomplished according to current guidelines over a period of 2 days (Figure 1). A computed tomography (CT) scan of the head revealed areas of low attenuation within the pons (Figure 2). Brain magnetic resonance imaging (MRI) confirmed the changes as compatible with osmotic demyelination syndrome (ODS) (Figure 3). He improved over the course of the next few weeks and was discharged to an alcohol and other drug abuse program for treatment of his alcoholism.

CASE PRESENTATION

A 60-year-old man with a history of alcoholism and diabetes mellitus type 2 presented to the emergency department with a 2-week history of progressive confusion, memory loss, and lower extremity weakness with limited ambulation. He was unkempt in appearance and orientated to person and place with ataxia, grade 3 horizontal nystagmus, and dysmetria. Muscle strength was reduced symmetrically in both lower extremities. Blood tests were abnormal only for sodium at 120 mEq/L (range 133-144 mEq/L), while all other results, including ammonia level, were normal. Hyponatremia correction was accomplished according to current guidelines over a period of 2 days (Figure 1). A computed tomography (CT) scan of the head revealed areas of low attenuation within the pons (Figure 2). Brain magnetic resonance imaging (MRI) confirmed the changes as compatible with osmotic demyelination syndrome (ODS) (Figure 3). He improved over the course of the next few weeks and was discharged to an alcohol and other drug abuse program for treatment of his alcoholism.

DISCUSSION

Formerly known as central pontine myelinolysis, ODS is defined by a symmetrical destruction of myelin sheaths involving mainly the central portion of the basis pontis without evidence of vascular involvement. The demyelination process usually occurs after rapid correction of chronic hyponatremia. ODS is associated with conditions such as alcoholism, malnourishment, diabetes, hepatic failure, liver transplantation, cirrhosis, chronic renal failure, and malignancy. The initial diagnosis is made clinically through behavioral disturbances and neurological deficits including confusion, mutism, dysarthria, dysphagia, bulbar and pseudobulbar paresis, hyperreflexia, paraplegia, quadriplegia, and seizures. In severe cases a locked-in state and coma may be seen. Cerebellar ataxia has been reported.

This condition was thought to be uniformly fatal with only postmortem diagnosis, but after the introduction of brain imaging, asymptomatic and milder courses without neurological deficit have been reported. Demyelination lesions occasionally can be detected by CT as low attenuation changes in the pons (Figure 1). The best noninvasive diagnostic technique is brain MRI, which facilitates better anatomical characterization. Typical MRI findings are of a homogeneous, well-defined region in the pons with symmetric hypodensity on T1-weighted images, hyperintensity on T2-weighted (Figure 3A), and Fluid Attenuation Inversion Recovery (FLAIR) images (Figure 3B), with no associated mass effect. In some cases the entire central pons is involved with only a thin rim of normal signal around it. These findings are not specific, and it is their anatomical distribution, combined with suggestive clinical features, that form the basis for the ODS diagnosis. MRI findings may lag behind clinical manifestations by as much as 4 weeks, so an initial negative result does not exclude ODS, and a repeat study in 2 weeks is recommended. The extent of the lesions does not correlate with severity of the manifestations or final outcome; this must be remembered to...
CONCLUSION

The prognosis of ODS is heterogeneous, ranging from complete neurological recovery and resolution of MRI findings to progression of deficits and death. To date, there is no specific treatment available, so efforts to prevent its occurrence remain paramount. An appropriate rate of hyponatremia correction and treatment of comorbid conditions are essential to reduce the risk of suffering this potentially devastating disease.7,8,15

Funding/Support: None declared.

Financial Disclosure: None declared.

REFERENCES

The mission of *WMJ* is to provide a vehicle for professional communication and continuing education for Midwest physicians and other health professionals.

*WMJ* (ISSN 1098-1861) is published by the Wisconsin Medical Society and is devoted to the interests of the medical profession and health care in the Midwest. The managing editor is responsible for overseeing the production, business operation and contents of the *WMJ*. The editorial board, chaired by the medical editor, solicits and peer reviews all scientific articles; it does not screen public health, socioecono- nomic, or organizational articles. Although letters to the editor are reviewed by the medical editor, all signed expressions of opinion belong to the author(s) for which neither *WMJ* nor the Wisconsin Medical Society take responsibility. *WMJ* is indexed in Index Medicus, Hospital Literature Index, and Cambridge Scientific Abstracts.

For reprints of this article, contact the *WMJ* at 866.442.3800 or e-mail wmj@wismed.org.

© 2014 Wisconsin Medical Society